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Abstract

We revisit random-walk methods to simulate the NMR response of fluids in porous media. Simulations reproduce the effects of dif-
fusion within external inhomogeneous background magnetic fields, imperfect and finite-duration B1 pulses, T1/T2 contrasts, and relaxing
or permeable boundaries. The simulation approach consolidates existing NMR numerical methods used in biology and engineering into
a single formulation that expands on the magnetic-dipole equivalent of spin packets. When fluids exhibit low T1/T2 contrasts and when
CPMG pulse sequences are used to acquire NMR measurements, we verify that classical NMR numerical models that neglect T1 effects
accurately reproduce surface magnetization decays of saturated granular porous media regardless of the diffusion/relaxation regime.
Currently, analytical expressions exist only for the case of arbitrary pore shapes within the fast-diffusion limit. However, when fluids
include several components or when magnetic fields are strongly inhomogeneous, we show that simulations results obtained using the
complete set of Bloch’s equations differ substantially from those of classical NMR models. In addition, our random-walk formulation
accurately reproduces magnetization echoes stemming from coherent-pathway calculations. We show that the random-walk approach is
especially suited to generate parametric multi-dimensional T1/T2/D NMR maps to improve the characterization of pore structures and
saturating fluids.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The application of NMR measurements for pore size
characterization of porous and permeable media is moti-
vated by two relationships between measurable quantities
and the pore surface-to-volume ratio S/V of porous media
saturated with a single fluid phase. First, longitudinal and
transversal relaxation times of a fluid (T1 and T2, respec-
tively) are related to the product q(S/V), where q is the
relaxivity of the pore surface. This relationship remains
1090-7807/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2007.05.024

* Corresponding author. Fax: +1 512 471 4900.
E-mail address: cverdin@mail.utexas.edu (C. Torres-Verdı́n).

1 Present address: Chevron North America Exploration and Production,
Houston, TX 77099, USA.
valid in the fast-diffusion limit [1] when paramagnetic cen-
ters are present at the pore wall surface. Second, the short-
time asymptotic behavior of the effective fluid diffusivity D

is directly related to S/V [2,3]. Practical limitations exist
when applying these two relationships to the interpretation
of NMR measurements of porous media. Specifically, it is
normally assumed that (1) pores are well defined and iso-
lated, and (2) inversion techniques can reliably and accu-
rately estimate the distribution of surface-to-volume
ratios. Experimental evidence shows that pores spanning
different length scales can be connected and, therefore, that
the estimated values of S/V could be interpreted in an aver-
age sense in the presence of low surface relaxivity, such as
in certain carbonate rocks [4]. In addition, effective pore
values of S/V sensed by protons in a fluid phase depend
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on the relative saturation of that phase within the pore:
when several fluid phases are present in the same pore
space, such as in the case of mixed-wettabilities, the actual
and effective values of S/V for that pore may differ substan-
tially. Models used in biological applications to study the
influence of membrane permeability on NMR signals also
over-simplify the pore structure of biological systems
because of the lack of efficient numerical simulation tech-
niques [5–8].

Recently, special acquisition techniques have been devel-
oped to improve the accuracy of NMR measurements to
assess fluid types [9–11] using (a) suites of magnetic pulse
sequences of different magnitudes, orientations, and char-
acteristic times, e.g., CPMG-like sequences with different
echo times and wait times, and (b) multi-dimensional inver-
sion of the measured magnetization decays in the form of
intensity maps in T1, T2, and D domains. Despite these
efforts, ambiguities remain when the saturating fluids exhi-
bit similar characteristics, such as light oil and water in
water-wet and mixed-wet rocks, because the inversion pro-
cess is sensitive to fluid diffusivity contrasts, restricted dif-
fusion, surface relaxation, and wettability of the porous
medium.

Modern NMR applications require simulation and
interpretation methods that can incorporate the complexity
of real porous media and multiphase fluid saturation at the
pore scale. Accurate simulation methods have been pro-
posed based on coherent pathways for bulk fluids [12–
15], or based on analytical diffusion propagators for the
case of periodic porous microstructures [16]. However,
the disordered nature of most biological and mineral por-
ous media demands more sophisticated approaches for
numerical simulation.

The objective of this paper is to develop an accurate an
efficient algorithm for the simulation of NMR measure-
ments of saturated microporous media. Specifically, the
algorithm is designed to account for known distributions
of (a) pore boundaries and surface characteristics (i.e.,
geometry and surface relaxation q and/or diffusion perme-
ability P), (b) static and susceptibility-induced magnetic
fields, (c) fluid phases and their bulk properties, and (d)
corresponding velocity fields superimposed to the diffusive
Brownian motion in the case of ionic displacement [17] or
hydraulic motion [18]. After motivating the need for a
microscopic description of the pore space to construct
quantitative NMR numerical models, we develop the algo-
rithm for the solution of Bloch’s equations along the con-
tinuous diffusion pathways of random walkers. This
approach remains valid when the magnetization coupling
between spins in a fluid is governed by constant longitudi-
nal and transversal bulk relaxations, and when Bloch’s
equations remain valid to describe spin magnetization,
i.e., both in the low-field NMR measurement of spin 1/2,
and in the high-field 1H measurements of water. Our
approach is benchmarked against analytical solutions for
complex diffusion/relaxation problems. We then generalize
the application of the algorithm for simulating the NMR
response of fluids in porous media, and emphasize its key
role in parametric multi-dimensional NMR modeling using
pore-scale arguments.
2. Macroscopic theory

Macroscopic descriptions of NMR measurements usually
invoke three independent processes to describe the relaxa-
tion time of the measured magnetization: (1) bulk fluid
relaxation, with characteristic longitudinal and transversal
times T1B and T2B, mainly due to dipole–dipole interac-
tions between spins within the fluid; (2) surface relaxation,
characterized by effective relaxation times T1S and T2S,
which occurs because of the proximity with paramagnetic
centers at interfaces between pore fluids and grain solids;
and (3) relaxation due to the presence of background mag-
netic field heterogeneities, T2D. The longitudinal and trans-
versal relaxation times measured for a fluid-saturated
sample are equal to the harmonic averages [19]

1

T 1

¼ 1

T 1B

þ 1

T 1S

; ð1Þ

and

1

T 2

¼ 1

T 2B

þ 1

T 2S

þ 1

T 2D

: ð2Þ

Bulk and surface relaxation times are intrinsic properties
given by fluid, porous medium, and thermodynamic state.
Bulk relaxations are usually expressed in the form [20,21]

T 1B;2B ¼ a
T
g
¼ f P ; Tð ÞDB; ð3Þ

where a is a fluid-specific constant, f a thermodynamic
function, and P, T, g, and DB the pressure, temperature,
viscosity, and bulk diffusivity of the fluid, respectively.
When diffusion–relaxation is controlled by diffusion, i.e.,
in the fast-diffusion limit qR/DB < 1 (R being the pore ra-
dius), the surface decay times T1S and T2S are proportional
to S/V [1]

1

T 1S;2S

¼ q1;2

S
V
: ð4Þ

The variable T2D, on the other hand, is an experimentally
controllable quantity affected by fluid diffusivity, internal
fields induced by porous medium magnetic heterogeneities,
and instrument configuration. For instance, using a CPMG
sequence with constant echo time TE and an applied mag-
netic gradient G, we have

1

T 2D

¼ c G TEð Þ2D
12

; ð5Þ

where c is the hydrogen gyromagnetic ratio and D remains
the effective diffusivity of the fluid under consideration.

The intrinsic bulk and surface relaxation times affect the
time-space evolution of the macroscopic magnetization
M = (Mx,My,Mz)

T of a given volume of fluid. Following
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Bloch–Torrey’s equation in the rotating frame
R ¼ ðx̂0; ŷ0; ẑÞ, one has [22]:

dM

dt
¼ DBr2Mþ cB�M�Mx

T 2

x̂0 �My

T 2

ŷ0 �Mz

T 1

ẑþM0

T 1

:

ð6Þ

In this equation, M0 ¼ M0ẑ is the equilibrium magnetiza-
tion aligned with the background magnetic field B0, and
B = (Bx,By,Bz)

T is the total magnetic field that affects the
spins in R. The magnetic field B varies as a function of time
and space because of (a) inhomogeneous tool background
field maps such as described in Fig. 1, (b) susceptibility
contrasts between fluid and porous matrix which distort
the background field map [16,23], and (c) additional back-
ground field gradients used to enhance the NMR decay due
to diffusivity contrasts between fluids in low-field applica-
tions, or to encode the spin position in high-field MRI
applications. When a RF pulse sequence is used to enforce
spin refocusing and echo forming, B1 magnetic pulses
superimpose to B0 for finite durations th. This duration
quantifies the amount of magnetization tilting (h = ciB1ith)
Fig. 1. Magnetic field map representing an approximation of the
background magnetic field imposed by the measurement system and
adapted from Ref. [12], assuming B0 of the elliptical form B0 =
(�(x/c � 0.5)2 + (y/c � 0.5)2 · 30 ẑ [Gauss], where c = 1 cm.
they create through the curl term in Eq. (6)—usually p/2 or
p for the entire pulse duration. For instance, regular
CPMG pulse sequences take the form of a p/2-pulse of
duration t90 along the x̂0 axis, followed by a series of p
pulses of duration t180 along the ŷ0 axis separated by the in-
ter-echo time TE = 2s. Spin echoes are stimulated between
two successive p pulses. Together with the proximity of
relaxing surfaces which affect the relaxation of the spin
packets captured by Eq. (6), this variation of B with both
time and space supports a microscopic description wherein
such constraints can be explicitly enforced in the numerical
formulation.
3. Microscopic random-walk resolution

Random walkers reproducing the diffusive motion of
spins have proved to be a reliable and flexible approach
to simulate the NMR responses in a variety of porous
medium geometries, including fractal or 3D disordered
granular porous media [24,25]. In addition, diffusion ran-
dom walks readily lend themselves to distributed com-
puter environments, thereby considerably reducing
computation time. Such algorithms simulate the projec-
tion of spin packets in the transversal plane of the rotat-
ing frame, i.e., in the plane of measurement of an NMR
tool antenna, and describe either surface relaxation effects
[4,26] or diffusion effects [23,27]. In this section, we intro-
duce a unified formulation for the simulation of NMR
measurements acquired for a wide range of engineering
and biological applications.
3.1. Diffusion of equivalent magnetic dipoles

We use a classical continuous random walk, whereby an
equivalent magnetic dipole is displaced within the pore
space attributed to a given fluid of self-diffusion DB and
bulk relaxation times T1B and T2B. Following an initial
location randomly determined within that fluid volume,
at each time step of infinitesimal-duration dt a vector of
normally distributed random numbers n = (nx,ny,nz) is
generated with unit variance and zero mean. The walker
is then spatially displaced in the Cartesian geometrical ref-
erence by a vector

drD ¼ ð6DB dtÞ1=2
n=knk: ð7Þ

In the presence of velocity drift v applied to the molecule, an
additional drift displacement drV = vdt is added to drD. In so
doing, dt is dynamically adapted along the walk so that (a) it
is smaller than any magnetic field pulse duration, (b) the
amplitude of the total displacement, idr = drD + drVi, is sev-
eral times smaller than surrounding geometric length scales
(e.g., pore throats restricting pore-to-pore connections,
wetting film thickness, etc.), (c) the value of the total mag-
netic field resulting from B0 and B1 in the rotating frame
can be assumed constant during each step, and (d) all walkers
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Fig. 2. Amplitude of the mean Mz and My magnetizations simulated for
1-s CPMG pulse acquisitions taking place after different wait times for the
same volume of bulk water (dashed curves, notedbulk) and water relaxing
in the porous medium (continuous curves, notedpm) formed by the void
fraction of the disordered grain packing shown in Fig. 10. Surface
relaxivity (q1 = q2 = 20 lm/s) and pore size (30 lm) were considered
uniform. Each magnetic dipole is initially depolarized (Mz = 0 and My

randomly distributed with zero mean), then Mz increases freely for a wait
time TW (no RF pulse). Dipoles collectively generate an exponential
build-up of the form 1 � exp(�t/T1). The CPMG RF pulse sequence is
then turned on, Mz is tilted by the first (p/2)x-pulse into My which becomes
non-zero and subsequently decays. Next, dipoles collectively generate a
macroscopic magnetization in the exponential form exp (�t/T2) following
the subsequent (p)y refocusing pulses. The results plotted above were
simulated for TE = 0.3 ms at TW = 0.03, 0.1, 0.3, and 1 s, and for
TE = 0.3, 1, 4, and 16 ms at TW = 3 s.
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are synchronized at the onset and offset of magnetic pulses as
well as at the time of echo acquisition.

3.2. Magnetization formulation A

We use diffusing random walkers to simulate NMR sig-
nals under the assumption that each walker carries a mag-
netic-dipole equivalent to that of a hydrogen spin packet.
Eq. (6) is adapted along each one-dimensional segment
by neglecting its convection term in $2 and by defining
the evolution matrix A given by

A ¼
� 1

T 2
cBz �cBy

�cBz � 1
T 2

cBx

cBy �cBx � 1
T 1

2
664

3
775; ð8Þ

and the reduced magnetization

M0 ¼Mþ A�1 �M0=T 1: ð9Þ
Eq. (6) is integrated as

M0ðtÞ ¼ eAt �M0ð0Þ; ð10Þ
where M 0(0) is the reduced magnetization at the onset of
each integration interval. New appropriate values for Bx,
By, and Bz are used on each random-walk segment. The
relaxation times T1 and T2 are also locally adjusted to ac-
count for the proximity of a relaxing boundary. Conse-
quently, for each step i spanning the time interval
[ti, ti + dti], the spin carried by the random walker is subject
to a new evolution matrix Ai and longitudinal relaxation
time T i

1. This calculation yields the magnetization formula-
tion A

Mi ¼ eðA
iÞdti � Mi�1 þ Ai� ��1 �M0

T i
1

� �
� ðAiÞ�1 �M0

T i
1

: ð11Þ

The total NMR signal is the sum of all M vectors for all
diffusing magnetic dipoles, sampled at the same rate.
Hydrogen indices weigh the magnetization contribution
of each walker in the presence of multiple fluid phases with
different hydrogen index. The Appendix provides analytical
solutions for the exponential of matrix A. Tracking the
projections of that total magnetization M onto ẑ and ŷ0

with time yields the magnetization polarizations and de-
cays illustrated in Fig. 2. This figure shows the responses
of both bulk water and water within relaxing porous med-
ium, simulated with CPMG pulse sequences and different
values of wait times (TW) and echo time (TE). Fig. 3 illus-
trates the joint influence of sampling and step size of the
random walks on the accuracy of the simulation results.

3.3. Magnetization formulation B

Previously developed NMR simulation algorithms
focused exclusively on reproducing surface relaxation or
diffusion within inhomogeneous fields. The latter effect
was usually treated in a manner similar to the one
described above, except that Bloch’s equation was solved
in the ðx̂0; ŷ0Þ projection of R by substituting M in Eq. (6)
with a complex magnetization M* = Mx + iMy [28]. In
turn, the magnetization was calculated numerically using
finite-difference methods [29] or without including a con-
vection term along random-walk trajectories [23,27]. That
approach neglected surface as well as longitudinal relaxa-
tion effects. Likewise, RF pulses were not accurately repro-
duced, and (p)y pulses could only be treated as a sign
change in the phase of M* [23], which made the method
exclusively amenable to CPMG sequences. The NMR sig-
nal was then considered equal to the sum of the cosine of
the spin phase shifts, where the phase shifts were equal to
the same rotation angle as in the evolution matrix for 3D
calculations (see the Appendix), i.e., / = cBdt. For com-
parison purposes, we also implemented this simulation
method in ðx̂0; ŷ0Þ space as formulation B.
3.4. Treatment of local surface relaxation

While the walker remains away from a fluid boundary,
the relaxation times T1 and T2 that affect the equivalent
magnetic dipole of the random walker are equal to the bulk
fluid longitudinal and transversal relaxation times, T1B and
T2B, respectively. However, once the walker is located
within one step of a fluid boundary of surface relaxivities
q1 (longitudinal) and q2 (transversal), the magnetization
decay is locally enhanced to include this surface relaxation
effect at the microscopic level. If the displacement achieved
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Fig. 3. Influence of walker number (N) and nominal step size (dr) on the
accuracy of the numerical simulations. This example simulates the
response of a water volume of 2 · 2 · 2 mm, with G = 13.2 G/cm and
TE = 2 ms. The resulting apparent T2 value is equal to 751 ms. Large
values of N are necessary to obtain smooth decays. Even with large N

values, too large values of dr create a bias. In this example, no step size
larger than 1 lm should be used for maximal accuracy.
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during the interval [t, t + dt] comes within a distance dr of a
fluid boundary, the boundary equation

Dbulk

oM

on̂
þ

q2

q2

q1

2
6664

3
7775 �M ¼ 0 ð12Þ

governs the behavior of the relaxation, where the unit vec-
tor n̂ describes the normal direction to the surface bound-
ary. For a locally flat boundary, Eq. (12) is solved on a
square lattice [30] or for continuous random walks [26] to
define a probability of instantaneously ‘annihilating’ the
spin when it reaches the boundary. Bergman et al. [26]
solved the boundary condition by integrating diffusion
propagators and related that ‘annihilating’ probability p

to surface relaxivity q as

p ¼ 2

3

qdr
DB

� 0:96: ð13Þ

In our model, we consider that each time the walker
reaches a relaxing boundary the magnetization decreases
by a factor (1 � p), or exp[�dt(p/dt)] since p� 1. There-
fore, the total relaxation rate becomes 1/T1,2 = 1/T1B,2B +
p/dt for that step. Equivalently, the relaxation times used
on each segment of the random walk become
1

T 1;2

¼ 1

T 1B;2B

þ e
3:84q1;2

dr
; ð14Þ

where e = 1 when the walker is located within a step of the
relaxing boundary, and 0 otherwise.

3.5. Transfer probability of permeable membranes

The case of permeable barriers between pore volumes
can be approached in a similar fashion to the case of relax-
ing surfaces. A boundary exchange rate kj is defined as the
proportionality factor between diffusion flux and concen-
tration difference across a boundary j, in units of time�1.
If bulk and surface relaxations can be neglected, then
the macroscopic magnetization balance of a compart-
ment bounded by permeable membranes is given in
[7,8]

oM

ot
¼ DBr2Mþ cB�M�

X
outwards

kjMþ
X

inwards

kjM
ðjÞ;

ð15Þ
where M(j) is the magnetization within a neighboring com-
partment j. The sum

P
over outward boundaries acts as a

surface sink term whereas the one over inward boundaries
acts as a surface source term. Since the surface sink term in
Eq. (12) acts as the relaxation decay terms in Eq. (1), the
following equivalence holds:

1

T 2

�
X

outwards

kj: ð16Þ

Furthermore, in the fast-diffusion limit we have 1/T2S =
q(S/V) [1]; similarly, kj = Pj(S/V) [7], where Pj is the mem-
brane permeability in units of length per unit time. It is
then possible to solve for surface permeability using
Bergman et al.’s treatment of surface relaxation: when
the walker comes within one step of distance dr from a per-
meable boundary k, there is a probability of transfer equal
to

gk ¼
2

3

P kdr
DB

� 0:96 ð17Þ

that the walker crosses the boundary; if that probability is
not honored, then the walker bounces back into its original
compartment while the clock time is incremented by dt. It
is particularly remarkable that both fluid/rock surface
relaxation [31] and biological membrane permeability [7]
exhibit the same range of values between 0.5 and 30 lm/s.
This similarity suggests that the parallel treatment of
relaxing or permeable boundaries remains valid on the
same range of fluid types and pore sizes.

4. Simulation results in bulk fluid

4.1. Echo sampling

The accuracy of our algorithm is first tested for the
case of a homogeneous background magnetic field
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gradient. Fig. 4 shows the shapes of the 1st, 2nd, 5th,
and 15th CPMG echoes simulated with the random-
walk algorithm for different echo times. The results
are in excellent agreement with both the measurements
and the coherent-pathway calculations of Hürlimann in
Ref. [13]. We can therefore conclude that random-walk
simulations are a viable and easily implemented
alternative to the more complex coherent-pathway
calculations.
Measurements
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pulses that immediately precede and follow the echoes.
Hürlimann and Griffin [12] quantified the relative ampli-
tude variation of the stimulated echo (produced by the
energy stored during the initial ðp=2Þx0-pulse) and of the
first spin echo (refocused by the first CPMG ðpÞy0 pulses)
with coherent-pathway calculations for given field maps
and pulse durations. In Fig. 5 we show that similar results
are obtained with the random-walk technique. The differ-
ences between the results of Ref. [12] and our simulations
can be attributed to differences in field map details and
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homogeneity of the background magnetic field. In all cases,
the amplitude of the first echo is remarkably lower than
that of the second echo for TE <5 ms, and becomes larger
when TE increases.

Dispersion of magnetic field strength—and therefore of
Larmor frequencies—throughout the volume enhances the
precession decay and the creation of echoes due to the RF
p pulses of a CPMG sequence. When the duration of these
RF pulses increases, then the measurable echo amplitude
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Fig. 6. Impact of background gradient on NMR echo amplitudes. The mean N
1 cm3, 300-ls echo time CPMG sequence, and different values of t90 and t180. P
noise); dashed curves, Mz. Top row: simulations performed with a homogeneo
with the field map described in Fig. 1.
decreases. Background field maps can therefore be opti-
mized to maximize the signal obtained during measurement
acquisition. These remarks are illustrated in Fig. 6, where
the formation of echoes in 1 cm3 of water is simulated with
our random-walk method (formulation A) through spin
refocusing between two p pulses, for different pulse widths
and two permanent magnetic field maps. As the duration of
the RF pulses increases, the quality of the echoes degrades
through lower amplitudes and larger spread. In these tests,
the field map shown in Fig. 1 generates higher echo ampli-
tudes, hence higher signal, than that of a homogeneous
magnetic gradient.

The magnetization decays considered in the following
sections of this paper are taken as the envelopes of maximal
values reached at each My echo.

4.2. Decay in an inhomogeneous background magnetic field

We now compare the decays generated by the presence
of background magnetic gradients between (1) random-
walk formulation A, (2) random-walk formulation B, and
(3) the normalized apparent decay M ¼ exp½�tð1=T 2Bþ
1=T 2DÞ�. Because the My signal obtained using formulation
A is sensitive to large sampling volumes and imperfections
in the magnetic field distribution, all its simulated decays
were normalized at the time origin. Fig. 7 compares simu-
lation results for two values of homogeneous gradient,
Gz = 12 and 29 G/cm, three echo times, TE = 0.3, 1, and
3 ms, and two sampling volumes, 1 mm3 and 1 cm3. For-
mulation B yields the same decays regardless of the sample
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volume and exactly matches the analytical decays. Formu-
lation A also perfectly fits the analytical results for the
smaller sampling volume, but exhibits substantial differ-
ences for the larger volume. This effect is due to the distri-
bution of the energy acquired during the different RF
pulses, as mentioned in Section 4.1, and cannot be
accounted for by formulation B or by standard analytical
expressions that disregard the finite duration of the RF
pulses.
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Fig. 8. NMR magnetization decays of bulk fluids simulated for different
values of wait time (left panels), and equivalent decays normalized in
amplitude at time t = 0 (right-hand panels). The same legend applies to all
panels. For simple fluids with unimodal distribution of bulk relaxation
times (top-right panel), all curves scale with TW and overlap with the
canonical form (1 � exp(�TW/T1)) · exp(�t/T2). For multi-component
hydrocarbons (bottom right-hand panel), such normalized curves do not
overlap. The insert describes the distribution of bulk relaxation times for
the 300-cp heavy oil measured at laboratory conditions, and is used as
input to the simulation algorithm.
4.3. T1 scaling

It is customary to consider that the NMR decay
obtained for a fluid after partial repolarization of duration
TW is equal to the decay at full polarization (i.e., starting
from M = M0, or TW fi1) weighted by the value
(1 � exp(�TW/T1)). Fig. 8 shows that this treatment is
appropriate for a simple-component fluid such as 7-cp oil
with unimodal bulk relaxation time at 200-ms in laboratory
conditions. For a 300-cp multi-component heavy oil with
40-ms relaxation peak value (distribution shown in the
insert of Fig. 8), the decays obtained after partial polariza-
tion are normalized so that the amplitude of each decay is 1
when t = 0. For a known distribution of bulk relaxations
of the multi-component fluid, each walker accounted for
a molecule of one miscible component of that fluid, and
was stochastically assigned values of bulk relaxation time
and diffusivity so that the T2 distribution was honored over
the entire population of random walkers. The normalized
decays show that no scaling exists between the different
decays due to the wide distribution of relaxation times.
In the presence of strong internal fields, the apparent values
of T2 would also span a wide relaxation range, but without
the corresponding spread in the T1 spectrum. Again, in this
case no scaling will exist between the magnetization decays
measured after incomplete polarizations with different
wait times. Because only Formulation A incorporates T1

build-up, it needs to be used for the cases of strong
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Fig. 9. Decay curves simulated for water (DB = 2.5 lm2/ms, T2B = 3 s) in
a single spherical pore with no background magnetic field gradient. The
pore radius R varies logarithmically from 0.4 (top panel) to 400 lm
(bottom panel), while for each radius the surface relaxivity q at the pore
wall is equal to 4 lm/s (triangles), 20 lm/s (circles) or 200 lm/s (squares).
These markers define the first-order analytical decay for a sphere
(1/T2 = 1/T2B + 3q/R) which diverges from the full expression of Brownstein
and Tarr [1] (in dashes) when qR/DB reaches 1, Eq. (18). Results simulated
with formulations A and B overlap (plain lines) and almost perfectly
match the full analytical expression in all cases. The ratio qR/DB is
computed within the panels for each combination of R and q.
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heterogeneities in bulk relaxation and internal fields to
ensure accurate simulation results for partial polarization.

5. Simulation results in saturated porous media

We now study how the incorporation of a porous med-
ium exhibiting surface relaxation affects the quality of the
simulation results. Different relaxation types are incorpo-
rated simultaneously to generate parametric multi-dimen-
sional NMR maps with the purpose of characterizing
pore size, wettability, fluid type and volumetric fraction
in the context of saturated rock-core analysis and in-situ
oil field evaluation.

5.1. Surface relaxation in different diffusion/relaxation

regimes

We test our algorithm for the classical context of an iso-
lated spherical pore of radius R, where S/V = 3/R. Fig. 9
shows the results of simulations performed with different
spherical pore radii ranging from 0.4 to 400 lm, and for
different values of surface relaxivity. In all the cases, the
simulation decays obtained with both formulations A
and B perfectly overlap in the absence of q1/q2 contrast,
as encountered in natural systems; for example, it is
observed that this contrast usually does not exceed 1.5 in
water-saturated rocks [31]. If this contrast were to reach
several units, however, differences in apparent decay times
would appear between formulations A and B. Likewise, a
local increase of the gradient due to diamagnetic or para-
magnetic materials in the solid phase of the porous medium
is more likely to affect simulation results using formulation
A because of the finite duration of the B1 pulses.

The simulation results shown in Fig. 9 match the first-
order surface relaxation time described by Eq. (4) as long
as qR/DB < 1. Identical results were obtained in the 3D
star-shaped pores formed by the void space fraction exist-
ing within a dense packing of overlapping spherical grains
with different compaction coefficients.

Outside the fast-diffusion limit, that is when qR/DB

becomes larger than 1, the surface relaxation described
by Eq. (4) becomes inaccurate. It is then necessary to con-
sider Brownstein and Tarr’s [1] full analytical solution,
whereby the total magnetization decay due to surface relax-
ation is equal to

MðtÞ ¼ Mð0Þ
X1
n¼0

Ine�t=T n : ð18Þ

In this expression, In ¼ 12 sin fn�fn cos fnð Þ2

f3
n 2fn�sin 2fnð Þ½ � and T n ¼ R2=Df2

n are

the amplitude and relaxation time defined by fn, the nth po-
sitive root of the equation

1� fn cot fn ¼ qR=D: ð19Þ
In Fig. 9, simulation results show the deviation from Eq.
(4) to Eq. (18) is correctly captured by the random-walk
algorithm for any value of qR/DB.
5.2. Two-dimensional NMR maps of gas/water and oil/water

mixtures in saturated rocks

In oil exploration and rock/fluid characterization, fluids
measured by in-situ NMR logging tools include brine, sin-
gle- and multi-component oil, gas, and water-based or oil-
based drilling-mud filtrate which leaked into a freshly
drilled porous rock formation. Multi-dimensional NMR
techniques are currently based on the simultaneous



Fig. 10. Example of disordered packing of identical grains used as rock
model to generate the 2D NMR maps shown in Figs. 12 and 13. The
spherical grains are overgrown until the void fraction reaches 20% of the
bulk volume.
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inversion of suites of CPMG-like sequences with multiple
values of TE and/or TW which allow different degrees of
spin repolarization between successive CPMG RF
sequences (Fig. 2). Fluid phases are distributed in the pore
space of a disordered grain pack (Fig. 10) according to geo-
metrical models in agreement with thermodynamic capil-
lary equilibrium [32] or with more complex principles of
drainage, imbibition, and electrical properties [33]. In these
models, as exemplified in Fig. 11, fluid phases are distrib-
uted at the pore level as overlapping blobs which are trun-
cated by grain surfaces. Two examples of rock/fluid
systems were simulated to illustrate the methodology in
disordered packs of overlapping spheres exhibiting 20%
void space, uniform distribution of pore sizes, and enforc-
ing a homogeneous gradient with Gz = 16 G/cm.

The first example was simulated for a mixture of 30%
water and 70% gas in arbitrary reservoir conditions, whose
bulk properties are shown in Table 1. Wait times varying
logarithmically from 1 ms to 10 s were applied during the
simulations of CPMG decay with 0.2 ms echo time, and
the corresponding magnetization decays were processed
with a T1/T2 inversion algorithm [11]. The left-hand panel
of Fig. 12 shows the resulting intensity T1/T2 map, where
the water peak located at T1 = T2 = 100 ms is affected by
surface decay. The small echo time has negligible influence
Table 1
Bulk properties of the fluids used in the numerical simulation of NMR
measurements of saturated rocks

Fluid Hydrogen
index

Bulk relaxation times
T1B = T2B

Bulk diffusivity
DB (cm2/s)

Water 1.0 3 s 2 Æ 10�5

Gas 0.3 4.5 s 10�3

7-cp oil 1.0 0.2 ms 10�6
on the T2 response of the low-diffusivity water; however, it
significantly reduces the apparent T2 value of the large-dif-
fusivity gas with respect to its intrinsic T1 value. In this
case, inversion of the T1 dimension efficiently discriminates
the signals from the two fluids. We also synthesized magne-
tization decays for multiple-TE diffusion sequences for D/T2

inversion and mapping. This was done by considering full
polarization (TW fi1) and values of TE equal to
0.2, 1, 3, 9, and 16 ms for a homogeneous gradient
Gz = 16 G/cm. Focusing on the same water/gas mixture
saturating our porous rock model, we obtain the D/T2

map shown in the right-hand panel of Fig. 12. In this plot,
as in subsequent D/T2 maps, the diagonal line characterizes
a D/T2 correlation existing for live hydrocarbons at specific
conditions of pressure and temperature (Eq. (3)). In this
plot, water and gas are distinguishable on both the D

and T2 dimensions.
Our second example consists of a mixture of 60% water

and 40% 7-cp oil at ambient conditions (see Table 1) within
the same rock model, and illustrates the simulation of wet-
tability effects at the rock surface. The same diffusion
sequences were implemented, and the simulation results
were inverted into the D/T2 maps shown in Fig. 13. Simula-
tion results for the water-wet case (left-hand panel) exhibit a
water peak at the intersection of the bulk water diffusivity
(2.105 m2/ms) and the surface relaxation time previously
observed in Fig. 13 (100 ms). The oil peak, however, lies
along the D/T2 hydrocarbon correlation line. The (D,T2)
coordinates of that peak along that line enable the assess-
ment of oil viscosity and possibly water-wettability. Upon
wettability alteration, it is usually assumed that the water
film existing between oil and rock surface ruptures under
different chemical and thermodynamic conditions [34,35],
while the least attainable zones of the pore space remain
water-wet (see Fig. 11). The right-hand panel of Fig. 13
shows simulation results obtained when such microscopic
geometries are included in the model. When oil is considered
as the wetting fluid phase, it is affected by surface relaxation
and the spread of its D/T2 peak increases along both the D

and T2 dimensions. Concomitantly, the relaxation time of
the water peak increases because some relaxing water/rock
surfaces have disappeared, and some of the water now
relaxes in bulk mode. Because of the low T1B/T2B contrasts
for water and oil, the low gradient value, and because of the
choice of CPMG acquisition sequence, Formulation B was
computationally efficient in this particular case. We empha-
size, however, that Formulation A would be required for
more general RF sequences or in the presence of stronger
magnetic field gradients.

The random-walk algorithm developed in this paper can
be used to quantify the impact on NMR measurements of
the combined effects of fluid content, fluid viscosity, satura-
tion history of the porous medium, and rock wettability.
For instance, Refs. [32,33] study the reliability of D/T2

2D NMR interpretation to accurately assess hydrocarbon
content and rock properties under the assumption of spe-
cific fluid displacement mechanisms within the pore space.



Fig. 12. T1/T2 (left) and D/T2 (right) NMR maps simulated for a two-phase immiscible mixture of 70% gas and 30% water in the grain packing of Fig. 10.
The diagonal line in the left-hand panel represents the T1 = T2 relationship. The diagonal line in the right-hand panel represents the D/T2 correlation
characterizing hydrocarbons in the conditions assumed for the simulations (after Ref. [32]).

Fig. 11. Examples of fluid distributions implemented at the pore scale. Each tetrahedron is centered on a pore from the void space of the grain packing
(Fig. 10), and is limited by sets of four-closest grains (in gray). Blue represents the water-filled pore space, red the oil-filled pore space. (a) Water fills the
pore. (b) An oil blob centered with the pore under the double assumption of oil-wettability (OW) of the grain surface within the radius of the oil blob, and
water-wettability (WW) of the grain surface in the least-accessible pore regions. (c) A thin film of wetting oil and bridging oil lenses are left in the oil-wet
region of the pore after invasion by water. The random-walk step is adjusted within each fluid zone.

Fig. 13. D/T2 NMR maps simulated for a two-phase immiscible mixture of 60% water and 40% 7-cp oil in the grain packing of Fig. 10, for water-wet (left-
hand panel) and oil-wet (right-hand panel) configurations. The diagonal line in the two panels represents the D/T2 correlation characterizing hydrocarbons
in the conditions assumed for the simulations (after Ref. [32]).
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6. Conclusions

The simulation algorithm described in this paper consol-
idates existing NMR numerical simulation methods used in
diverse areas of biology and engineering into a single for-
mulation that incorporates both diffusion within inhomo-
geneous magnetic fields and surface effects, including
magnetization relaxivity and membrane permeability.
Other than the magnetic-dipole approximation, this formu-
lation is constrained by none of the assumptions required
for analytical models concerning the statistical distribution
of spin phase shifts, spin density, field homogeneity, or
fast-diffusion limit. In addition, the simulation algorithm
described in this paper extends NMR simulation capabili-
ties beyond those of single-phase periodic media, which
are so far the only type of porous media that can be accu-
rately described with analytical techniques.

Previously described NMR simulations techniques
neglected longitudinal effects; while it is expected that those
techniques would not accurately reproduce the NMR
response of molecules with substantial T1/T2 contrasts,
we showed that the solution of the complete set of Bloch’s
equations is necessary to accurately reproduce echo ampli-
tudes in the presence of strongly inhomogeneous magnetic
fields and arbitrary pulse sequences. The simulation algo-
rithm described in this paper was successfully validated
against coherent-pathway results in homogeneous gradi-
ents and against the full expansion of Brownstein and
Tarr’s surface relaxation in spherical pores; these results
suggest that random walkers can reliably be used to accu-
rately characterize diffusion in arbitrary porous media,
where analytical expressions are not accurate.

We considered suites of longitudinal and transversal
magnetizations for multiphase fluid mixtures saturating
models of porous media for different values of wait time
and echo time. These synthetic magnetizations can be
subsequently inverted into parametric multi-dimensional
intensity maps cross-plotting T1, T2, and D for improved
characterization of pore structure, wettability, and fluid
types. Such a methodology provides new opportunities
to study quantitative relationships between NMR mea-
surements and properties of economic interest that
cannot be directly measured in-situ [31]. Moreover, the
accurate simulation of magnetization decay opens the
possibility of optimizing new NMR pulse acquisition
sequences for specific applications in porous media in
the presence of local variations of fluid distributions
and internal fields.

Appendix A. Analytical calculations of the time-evolution

matrix exponentials in Bloch’s equation

The total magnetic field applied to the spin B = B0 + B1

is either B ¼ B0 ¼ B0ẑ between RF pulses, B ¼ B1x̂þ B0ẑ

during x 0-pulses, or B ¼ B1ŷþ B0ẑ during y 0-pulses. This
approach makes no approximation on the quality of mag-
netic pulses because the actual dispersion of Larmor fre-
quencies is honored across the spin population and the
spin diffusion is fully accounted for during the enforcement
of B1.

Between B1 pulses, the only magnetic field present is the
background field, and the effective relaxation times T1,2 for
that step are given by Eq. (14). It then follows that

Adt ¼
� dt

T 2
cBzdt 0

�cBzdt � dt
T 2

0

0 0 � Dt
T 1

2
664

3
775; and therefore

eAdt ¼
e�

dt
T 2 cos cBzdtð Þ e�

dt
T 2 sin cBzdtð Þ 0

�e
� dt

T 2 sin cBzdtð Þ e
� dt

T 2 cos cBzdtð Þ 0

0 0 e�
dt
T 1

2
664

3
775: ðA1Þ

During B1 (p/2)x pulses, the product Adt takes on the form

Adt ¼
� dt

T 2
cBzdt 0

�cBzdt � dt
T 2

cBxdt

0 �cBxdt � dt
T 1

2
664

3
775: ðA2Þ

The three eigenvalues ki of Adt are found by solving the
characteristic polynomial given by

P xðkÞ ¼ detðkI� AdtÞ

¼ k3 þ k2 2dt
T 2

þ dt
T 1

� �

þ k
2ðdtÞ2

T 2T 1

þ ðdtÞ2

T 2
2

þ ðcBxdtÞ2 þ ðcBzdtÞ2
 !

þ ðdtÞ3

T 2
2T 1

þ ðdtÞ3ðcBxÞ2

T 2

þ ðdtÞ3ðcBzÞ2

T 1

 !
;

which we solve using Cardan’s method

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� qÞ3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ qÞ3

p
� a

3
;

k2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ qÞ3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� qÞ3

p� �
� a

3
þ i

ffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ qÞ3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� qÞ3

p� �
;

k3 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ qÞ3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� qÞ3

p� �
� a

3
� i

ffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ qÞ3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� qÞ3

p� �
;

8>>>><
>>>>:

ðA3Þ

with p ¼ 1

3
b� a2

3

� �
; q ¼ 1

2
c� ab

3
þ 2a3

27

� �
;

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p3

p
; and

a ¼ 2dt
T 2

þ dt
T 1

� �
; b ¼ 2 dtð Þ2

T 2T 1

þ dtð Þ2

T 2
2

þ cBxdtð Þ2 þ cBzdtð Þ2
 !

;

c ¼ dtð Þ3

T 2
2T 1

þ dtð Þ3 cBxð Þ2

T 2

þ dtð Þ3 cBzð Þ2

T 1

 !
:

ðA4Þ

A matrix of eigenvectors corresponding to the above eigen-
values can be calculated as
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U ¼

cBzdt
k1þ dt

T 2

cBzdt
k2þ dt

T 2

cBzdt
k3þ dt

T 2

1 1 1

� cBxdt
k1þ dt

T 1

� cBxdt
k2þ dt

T 1

� cBxdt
k3þ dt

T 1

2
666666664

3
777777775
;

whereupon,

eAdt ¼ U �
ek1 0 0

0 ek2 0

0 0 ek3

2
64

3
75 �U�1:

During B1 (p)y pulses, Adt takes on the form

Adt ¼
� dt

T 2
cBzdt �cBydt

�cBzdt � dt
T 2

0

cBydt 0 � dt
T 1

2
664

3
775:

Upon replacing Bx with By in Eq. (A4), it is readily found
that the eigenvalues of this last matrix are identical to those
of Eq. (A3). The corresponding eigenvectors are included
in matrix U as

U ¼

1 1 1

� cBzdt
k1þ dt

T 2

� cBzdt
k2þ dt

T 2

� cBzdt
k3þ dt

T 2

cBydt
k1þ dt

T 1

cBydt
k2þ dt

T 1

cBydt
k3þ dt

T 1

2
66666664

3
77777775
:

The computation of eAdt follows directly from the above
expressions.
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